

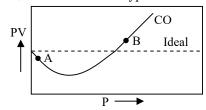
Date Planned : / /	Daily Tutorial Sheet-4	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

46. Which pair of molecules has the strongest dipole - dipole interactions?

(A) NH3 and CH4 NH₃ and NH₃

(C) CH₄ and CH₄

- **(D)** ${\rm CO}_2$ and ${\rm CO}_2$
- The ratio of van der Waals constants a and b, $\left(\frac{a}{b}\right)$ has the dimension of : 47.
 - $atm\ L^{-1}$ (A)
- $L atm mol^{-1}$ **(B)**
- (C) $L \text{ mol}^{-1}$
- atm L mol⁻² (D)
- 48. The van der Waals equation of state reduces itself to the ideal gas equation at:
 - (A) High pressure and low temperature
- (B) Low pressure and low temperature
- (C) Low pressure and high temperature
- (D) High pressure and high temperature
- 49. For CO, isotherm is of the type as shown:



Near the point A, compressibility factor Z (for 1 mol of CO) is :

- $\left(1 \frac{b}{V}\right)$ (C) $\left(1 + \frac{a}{RTV}\right)$ (D) $\left(1 \frac{a}{RTV}\right)$
- **50**. In the above Question, near the point B, compressibility factor Z is about :

- $\left(1 \frac{\text{Pb}}{\text{RT}}\right) \qquad \qquad \textbf{(B)} \qquad \qquad 1$
- (C)
- $\left(1 + \frac{\text{Pb}}{\text{RT}}\right)$ (D) $\left(1 \frac{\text{a}}{\text{RTV}}\right)$
- The van der Waal's equation of state for one mole of CO_2 gas at low pressure will be : 51.
 - $\left(P + \frac{a}{V^2}\right)V = RT$ (A)

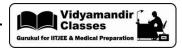
(B) $P(V-b) = RT - \frac{a}{\pi^2}$

 $P = \frac{RT}{V - b}$ (C)

- $(D) P = \left(\frac{RT}{V b} \frac{a}{V^2}\right)$
- **52**. Express the average kinetic energy per mole of a monoatomic gas of molar mass M, at temperature T K in terms of the average speed of the molecules U_{avg} :
 - $\frac{8M}{3\pi}$ U_{avg} (A)

- **(B)** $\frac{4M}{3\pi}U_{avg}^2$ **(C)** $\left(\frac{2M}{\pi}\right)U_{avg}^2$ **(D)** $\left(\frac{3\pi M}{16}\right)U_{avg}^2$
- **53**. Ice, water and steam can exist simultaneously at:
 - (A) All temperatures

- **(B)** All pressures
- All temperatures and pressure (C)
- (D) Triple point



 $P_1 = P_2 = P_3$

lacksquare

(D)

1 mole of each of X_1, X_2, X_3 with van der Waal's constants a (in atm L^3 mol⁻²) 1.0, 3.8, 2.1 respectively is kept separately in three different vessels of equal volume at identical temperature. Their pressures are observed to be P_1, P_2 and P_3 respectively. On the basis of this data alone, select the correct option (neglect the effect of 'b'):

(A) $P_1 < P_2 < P_3$ (B) $P_2 < P_1 < P_2$ (C) $P_2 < P_3 < P_1$

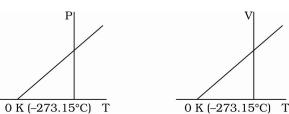
55. At a high pressure, the compressibility factor (Z) of a real gas is usually greater than one. This can be explained from van der Waals equation by neglecting the value of:

(A) b (B) a (C) Both a and b (D) V

56. At a constant pressure, what should be the percentage increase in the temperature in kelvin for a 10% increase in volume:

(A) 10% (B) 20% (C) 5% (D) 50%

57. What conclusion would you draw from the following graphs for an ideal gas?



- (A) As the temperature is reduced, the volume as well as the pressure increases
- (B) As the temperature is reduced, the volume becomes zero and the pressure reaches infinity
- **(C)** As the temperature is reduced, the pressure decreases
- (D) A point is reached where, theoretically, the volume becomes zero
- **58.** Which of the following represents the van der Waal equation for n moles of a real gas?

(A)
$$\left(P + \frac{a}{V^2}\right)(V - b) = nRT$$
 (B) $\left(P + \frac{a}{nV^2}\right)(V - nb) = nRT$

(C)
$$\left(P + \frac{n^2 a}{V^2}\right) (V - nb) = nRT$$
 (D)
$$\left(P + \frac{na}{V^2}\right) (V - nb) = nRT$$

59. Which of the following equations represents the compressibility factor for 1 mol of gas.

(A) $Z = \frac{PV}{R}$ (B) $Z = \frac{PV}{T}$ (C) $Z = \frac{RT}{PV}$ (D) $Z = \frac{PV}{RT}$

60. At high pressure, the van der Waals equation is reduced to :

(A) $\left(P + \frac{n^2a}{V^2}\right) = nRT$ (B) P(V - b) = nRT

(C) P(V - nb) = nRT (D) PV = nRT